ООО «БИОНЕР»

официальный дистрибьютор Донг КУ, (Корея) в России

SmartX - первый набор для сепарации жировой ткани в РФ

SmartX-svf.ru

Ycellbio.ru

CFR - CODE OF FEDERAL REGULATIONS. TITLE 21 OF APRIL 1, 2017. DEPARTMENT OF HEALTH AND HUMAN SERVICES PART 1271 - HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS

Аутологичное применение - имплантация, трансплантация, инфузия или трансфер клеток или тканей, при которых донор и реципиент одно и то же лицо

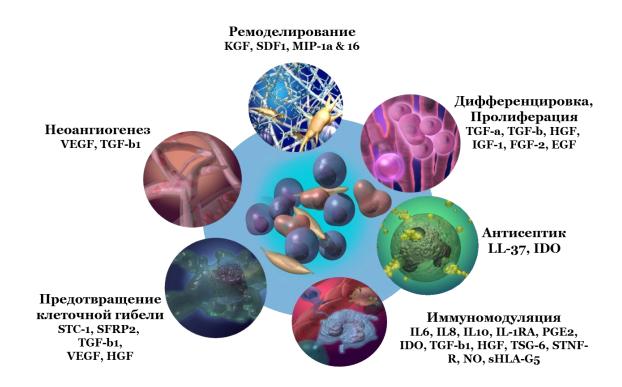
Производство клеточных и тканевых продуктов включает в себя любые из или все этапы выделения, обработки, хранения, маркировки, упаковки или распространения любых видов клеток и тканей человека, а также скрининг или тестирование доноров клеток или тканей.

Обработка (процессинг) может включать: резку, измельчение, формирование, ферментную обработку, децеллюлизацию, культивирование.

Минимальная манипуляция:

Для структурных тканей – обработка, не оказывающая влияние на исходные свойства и функции тканей, с целью последующего их использования в реконструктивной и восстановительной медицине

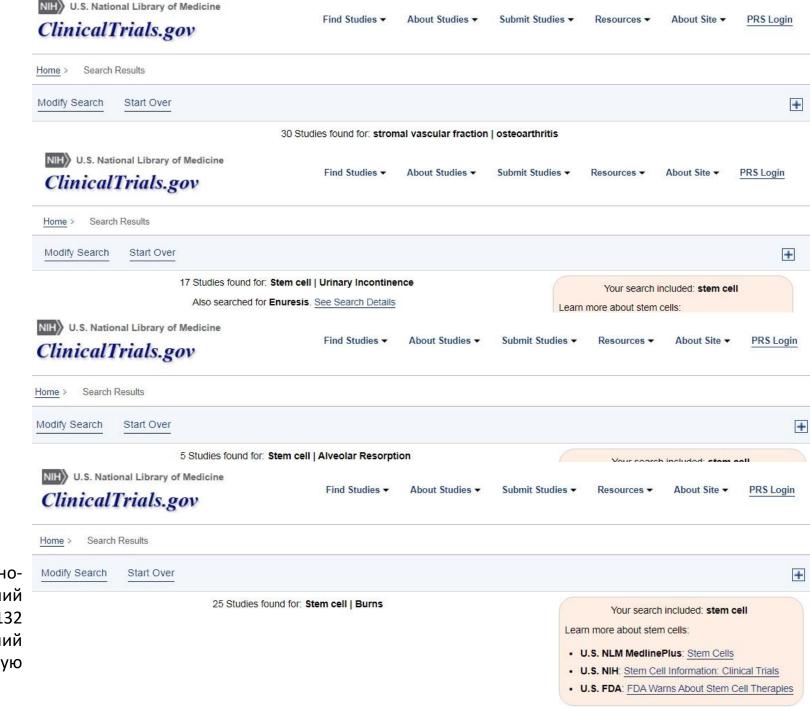
Примеры структурных тканей: • Кость; • Кожа; • Амниотическая мембрана и пуповина; • Кровеносный сосуд; • Жировая ткань; • Суставной хрящ;


• Неартикулярный хрящ; а также • Сухожилие или связка

Федеральный закон от 23 июня 2016 г. N 180-ФЗ «О биомедицинских клеточных продуктах»

Биомедицинский клеточный продукт - комплекс, состоящий из клеточной линии (клеточных линий) и вспомогательных веществ, либо из клеточной линии (клеточных линий) и вспомогательных веществ в сочетании с прошедшими государственную регистрацию лекарственными препаратами для медицинского применения (далее - лекарственные препараты) и (или) медицинскими изделиями (манипулированные клеточные продукты)

Цели использования клеточных технологий в клинической практике


- - Ремоделирование или улучшение функционирования ткани (улучшение васкуляризации ишемических очагов, при стимуляции регенерации донорских тканей при заболеваниях печени или нервной системы);
- - Замещение утраченных или пораженных патологическим процессом тканей (трансфузия компонентов крови, трансплантация костного мозга, применение культивированных фибробластов или ММСК, жировой или стромально-васкулярной фракции для закрытия раневых поверхностей);
- Привнесение новой функции (клеточная терапия наследственных заболеваний, иммуномодуляция).

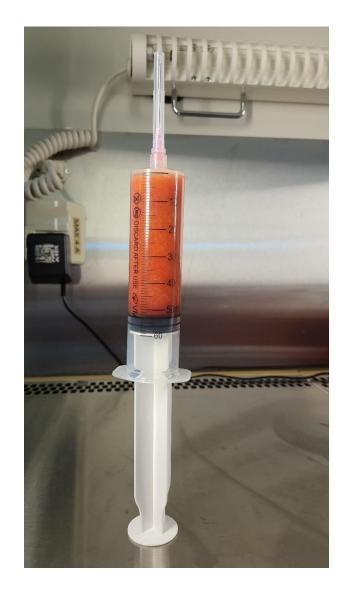
СВФ, полученная из жировой ткани, характеризуется содержанием 0,3% перицитов, 57,9% эндотелиальных клеток предшественниц, 33,6% клеток со стромальным фенотипом, а также 65,9% зрелого эндотелия;

Области применения СВФ

- 1. Реконструктивная хирургия
- 2. Травматология
- 3. Урология
- 4. Челюстно-лицевая хирургия
- 5. Комбустиология

Если говорить только про использование стромальноваскулярной фракции, исследований таких 700, 132 насчитывается более И3 которых зарегистрировано на Clinical trial. исследований успешно завершены показали клиническую эффективность

Получение СВФ. Классический путь



2,5 часа

настоящий продуктов из жировой ткани момент технологии выделения клеточных эволюционируют в направлении автоматизации процесса и стандартизации протоколов выделения для повышения качества и чистоты конечного продукта. Выделяют 2 основных технологии по принципу выделения клеточного продукта: ферментативный и механический способы.

SmartX. Технология получения клеточного продукта

Отмывка липоаспирата в 50 мл шприце

Ферментная обработка липоаспирата

30 минут, 37°С

Фильтрация

Перенос в шприцы SmartX

Получение клеточного продукта

Перенос клеток в один шприц, с последующими отмывками

Сравнительная характеристика клеточных продуктов, полученных из жировой ткани пациентов с использованием двух разных систем, предназначенных для получения клеточных фракций с использованием ферментативного (SmartX) и механического методов выделения. Визуальная оценка

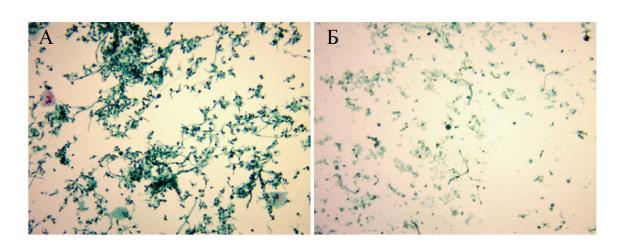


Рис.1 Гистологическое исследование конечного клеточного продукта. А — клеточный продукт, полученный при помощи SmartX (ферментативный способ). Б — клеточный продукт, полученный при помощи системы механического выделения.

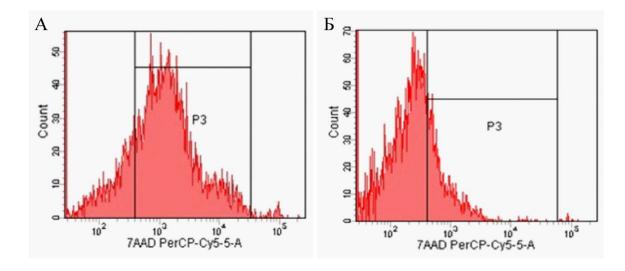


Рис.2 Оценка жизнеспособности клеточных продуктов жировой ткани, полученных при помощи систем для выделения клеточных фракций. Проточная цитометрия. . А — клеточный продукт, полученный при помощи SmartX (ферментативный способ). Б — клеточный продукт, полученный при помощи системы механического выделения.

Сравнительная характеристика клеточных продуктов, полученных из жировой ткани пациентов с использованием двух разных систем, предназначенных для получения клеточных фракций с использованием ферментативного (SmartX) и механического методов выделения. Оценка ADSCs, входящих в состав СВФ

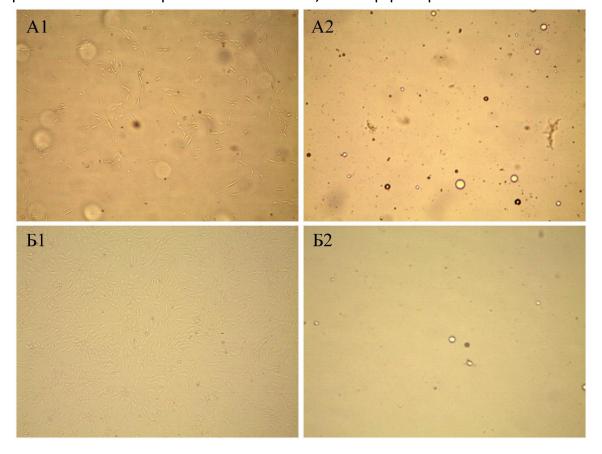


Рис. 3 Визуальная оценка культуры клеток ADSC, полученных при помощи систем для выделения клеточных фракций. A1 — 3 сутки культивирования клеточного продукта, полученного при помощи системы SmatrX. A2 - 3 сутки культивирования клеточного продукта, полученного продукта, полученного выделения, Б1 — 7 сутки культивирования клеточного продукта, полученного при помощи системы механического выделения. Увеличение ×50.

Результаты. Сводная таблица

	SmartX (n=10)	Система выделения механическим способом (n=10)	Классический «ручной» ферментативный метод (n=10)
Время обработки	2-2,5 часа	40 минут	2-2,5 часа
Объем обрабатываемой жировой ткани	10-60 мл – увеличивается время обработки жировой ткани	15 мл	> 10 мл
Количество клеток с 1 мл жировой ткани	$0.83 \pm 0.27 \times 10^6$	$0,23 \pm 0,21 \times 10^6$	$0.91 \pm 0.31 \times 10^6$
Жизнеспособность клеток	88,2 ± 3,7%	32,5±16,4 %	92 ± 4,6%
Пролиферативный потенциал ADSC	Высокий	Низкий/отсутствует	Высокий
Количество «мусора» в конечном продукте	+	+++	+

Спасибо за внимание

SmartX-svf.ru

Ycellbio.ru